Correction Detection and Error Type Selection as an ESL Educational Aid

نویسندگان

  • Benjamin Swanson
  • Elif Yamangil
چکیده

We present a classifier that discriminates between types of corrections made by teachers of English in student essays. We define a set of linguistically motivated feature templates for a log-linear classification model, train this classifier on sentence pairs extracted from the Cambridge Learner Corpus, and achieve 89% accuracy improving upon a 33% baseline. Furthermore, we incorporate our classifier into a novel application that takes as input a set of corrected essays that have been sentence aligned with their originals and outputs the individual corrections classified by error type. We report the F-Score of our implementation on this task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Parse Features for Preposition Selection and Error Detection

We evaluate the effect of adding parse features to a leading model of preposition usage. Results show a significant improvement in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error detection task. Analysis of the parser output indicates that it is robust enough in the face of noisy non-native writing to extract useful information.

متن کامل

Joint English Spelling Error Correction and POS Tagging for Language Learners Writing

We propose an approach to correcting spelling errors and assigning part-of-speech (POS) tags simultaneously for sentences written by learners of English as a second language (ESL). In ESL writing, there are several types of errors such as preposition, determiner, verb, noun, and spelling errors. Spelling errors often interfere with POS tagging and syntactic parsing, which makes other error dete...

متن کامل

The WikEd Error Corpus: A Corpus of Corrective Wikipedia Edits and Its Application to Grammatical Error Correction

This paper introduces the freely available WikEd Error Corpus. We describe the data mining process from Wikipedia revision histories, corpus content and format. The corpus consists of more than 12 million sentences with a total of 14 million edits of various types. As one possible application, we show that WikEd can be successfully adapted to improve a strong baseline in a task of grammatical e...

متن کامل

Using Contextual Speller Techniques and Language Modeling for ESL Error Correction

We present a modular system for detection and correction of errors made by nonnative (English as a Second Language = ESL) writers. We focus on two error types: the incorrect use of determiners and the choice of prepositions. We use a decisiontree approach inspired by contextual spelling systems for detection and correction suggestions, and a large language model trained on the Gigaword corpus t...

متن کامل

The Effect of Learner Corpus Size in Grammatical Error Correction of ESL Writings

English as a Second Language (ESL) learners’ writings contain various grammatical errors. Previous research on automatic error correction for ESL learners’ grammatical errors deals with restricted types of learners’ errors. Some types of errors can be corrected by rules using heuristics, while others are difficult to correct without statistical models using native corpora and/or learner corpora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012